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ABSTRACT

This paper presents a practical approach to communication synthe-
sis for hardware/software system specified as tasks communicating
through lossless blocking channels. It relies on a limited set of
templates that characterize the way data are exchanged between
tasks realized either in software or in hardware. The templates
are highly portable because their software part is implemented us-
- ing the POSIX thread functions, and their hardware part is a hand
crafted synthesizable module with a System VCI interface.

These Interface Modules allow simple Virtual Component reuse -

since they not only implement protocol compatibility through the
use of the System VCI/OCB standard but also system level com-
munications through semantics widely accepted in the design com-
munity.

1. INTRODUCTION

System-level specifications are often available under the form of
communicating sequential processes. Each process uses blocking
primitives to read and write data through mono-directional lossless
channels usually organized as FIFOs. This model, known as Kahn
processes network[12] is well suited for the description of embed-
ded systems [10, 4, 7] and is the natural entry of HW/SW Codesign
frameworks[11, 1, 16].

It relies on the classical read (channel, buffer, size) and
write(channel, buffer, size) primitives, where channel
is a point-to-point link identifier and buffer is an ordered set of
size items. Since the primitives are blocking ones, the content of
the buffer may not be altered during their execution. The process

- that writes into the FIFO is called the producer and the one that
reads from the FIFO the consumer.

This paper deals with the synthesis of the communications from
such a specification to an actual hardware/software implementation
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on the target architecture of Figure 1.
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Figure 1: Target system

We first present the generic communication model used by Brunel
et al.[3] during the COSY project. Based on this model, we de-
scribe some representative communications templates to perform
data exchanges efficiently, for a producer in SW or HW to a con-
sumer in SW or HW. The templates are then analyzed to determine
the respective responsibilities of the software and the hardware to
physically perform the communication, with the constraint of defin-
ing the minimum hardware support necessary for their implemen-
tation.

2. COMMUNICATION SYNTiiESIS
Generic Model for FIFO Channels Communi-

cation
Commumcation through a FIFO channel means perfortmng 4 ac-
tions:

1. Data transfer between both channels ends. The process knows
a lower bound on the number of items that can be transfered by
reading the FIFO status, thus no lock of the FIFO is necessary to
perform the transfer,

2. FIFO status shared variable update by the reader and the writer.
This is a variable shared by the producer and the consumer, there-
fore concurrent accesses shall not occur,

3. Blocking a task when it cannot perform‘me required operation
due to lack of full (when reading) or empty (when writing) FIFO
slots,



4. Awaking a task when either data or slots are available, allowing
a blocked operation to resume.

The way these actions are performed clearly depends on the HW
or SW nature of the processes and on their implementation. The
task of communication synthesis as we define it consist in mapping
a given channel — i.e perform all the above operations — onto one
predefined communication template.

The general approach is inspired of the one presented in {8, 13],
that however doesn’t give any detailed information on how syn-
chronization is performed. Our contribution is to formalize more
clearly what data transfers are made from in a multi-tasks, multi-
processor environment, and to present practical templates for them.

Both the HW and SW parts of the template are parts of a library, and '

are instanciated as is, without any protocol synthesis or code gen-
eration. This allows optimized implementation that could hardly
be automatically done (see for exemple the implementation of split
transactions on the PI-Bus {14] in Section 3.3). {6) and others also
use library components, but they glue them together through a syn-
thesis process.

Communication architecture

The target architecture of our communication synthesis contains
one or several general purpose processors, several coprocessors that
can be either master (initiator of a transfer) or slave (target of a
transfer) on a System VCI compliant on chip interconnect.

In software, communication synthesis is handled by the implemen-
tation of the read and write primitives using the POSIX threads.

Accessing a FIFO buffer for reading or writing is a simple memory
copy. However updating its status must be performed under the
control of a mutex that warranties exclusive access to the variable.
To access the shared variable, a mutex_lock must be performed.
If the mutex is already locked, then the calling thread is blocked
until it is unlocked by another thread using mutex_unlock.

If data (resp. FIFO slots) are not available, the task uses cond_wait
to be suspended until a condition (cond) becomes true. The con-
dition is changed by the producer (resp. consumer) thread with
cond_signal once it has written (resp. read) the FIFO. The way
the copy is performed depends on the template that is used to'im-
piement the communication.

In hardware, we have chasen to use a communication protocol as
close as possible to the read and write primitives, because these
are used in the task behavioral specification. We thus assume that
a coprocessor that implements a task in hardware needs to perform
blocking read and write operations. This requires the definition
of a new protocol (we call it the vector protocol in what follows,
and it is presented Figure 2), that must be used by the coprocessor.
This also necessitate to define a hardware interface module that
performs data transfer from a coprocessor that uses the vector pro-
tocol through the on chip interconnect and provides mechanisms to
supports synchronization between the producer and the consumer.
This choice of having a dedicated hardware interface is dictated by
the following reasons:

o The tool that synthesizes the task as a coprocessor doesn’t have
to know about the bus protocol, the masterness/slaveness of the
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VC, the interrupts handling, the system address map, ..., that are
system and communication implementation related,

e The user that wants to try other communications means, like an
other bus standard, a point-to-point connection, or even simply
another manner of using the communication resources doésn’t
have to express these details in the behavior of the component.
This allows easy exploration of the communication means with-
out the need of modifying the behaviors and resynthesizing the
COprocessors.
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LENGTH (0
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STEP
DONE

Figure 2: Timing diagram of a vector transfer

This vector protocol is as follows. The coprocessor sets the num-
ber of items to transmit on the LENGTH lines and asserts the REQ
signal. This is the hardware counterpart of the call of the soft-
ware primitive. The STEP signal validates the data present on the
DATA lines. When all items have been transfered, the DONE signal
is asserted. This is the hardware counterpart of returning from the
primitive. This protocol can be implemented with a two states FSM
for each channel. To handle this protocol, the coprocessor must
have an internal buffer. The absence of address (or index) lines al-
lows to avoid dependencies regarding the buffer implementation,
that can be random access or not. This protocol is point-to-point

-and the LENGTH signal is the size parameter of the communica-

tion primitive.

All the details and complexity of the communication protocols are
hidden in a hardware interface module and its software drivers. The
module has a VCI interface to warranty interconnect level compat-
ibility, and can be either initiator or target of a VCI transfer.

VCI is a necessary but not sufficient condition to IP reuse, because
at this level it is already necessary to have a common high-level
communication setup between the VCs. One way of ensuring that
is to define a set of communication templates and to build a pro-
grammable Hardware Interface Module to support them.

This approach is quite different from the one from Borriello er
al. [5] that generates dedicated hardware from waveforms and spe-
cific processor informations. They also implement the drivers from
a device description, but do not specify which type of assumption
they make on the underlying operating system.

In our case we act at a more abstract level that requires a less auto-
mated approach. We demand that the coprocessors play the vector
protocol and that the operating system supports the POSIX threads.

3. COMMUNICATION TEMPLATES

We present a few distinctive communication templates to outline
the resources needed by the Interface Module. All these templates
share a common concern: ensuring proper data exchange while
minimizing tasks context switches, interconnect bandwidth usage
and interrupt generation. The communication templates as exposed



here make no assumption about the nature of the interconnect (bus,
circuit switching or packet switching networks).

We present below one communication template per type of commu-
nication. Other can be though of, depending mainly on the amout
of data and the size of each chunk of data to be transfered: it is
likely that exchanging a frame or a pixel will not have the same
constraints. All type of communication support FIFOs either in
memory or in the interface.

31 SWtoSW

The FIFO is in memory. This requires a kernel implementing the
POSIX threads to run on the processor. As — almost — all current
kemels are POSIX compliant, this is solely a compilation of the
primitives for the target processor.

m

CPU memory
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Figure 3: Software/Software communication
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3.2 SW to HW and vice-versa

‘The FIFO can either be in memory or in the interface. We present
here the case where the FIFO is in the interface, and we assume
that the producer is a SW task and the consumer a HW coprocessor.
(The opposite transaction is symmetrical.)

The physical FIFO depth is not related to the size parameter of
the primitive. Data is split by the SW driver into chunks that can be
accepted by the interface. If the FIFO is in the interface, the status

Bus

Figure 4: SW/HW communication with FIFO in the interface

is implemented in the interface itself and updated by the hardware.
It is automatically incremented when a data is written by in the
FIFO and decremented when the coprocessor reads a data using
the vector protocol.

We need a mechanism that can suspend the writing task when the
FIFO is full. This allows other software tasks to run on the CPU
while the producing task waits for slots to be available in the FIFO.
Conversely, when some data are consumed by the coprocessor,
we need a mechanism to resume the producing task so it can be
rescheduled by the system. In the full software implementation
of the task, we use a condition to stop and restart the task. The
writing task is in software, so it wait on a semaphore by executing
sem_wait, waiting for the consumer to read items from the FIFO.
To wake up the task when slots are vacant, we need to change the
semaphore state using sem_post. To do so, the interface mod-
ule implements a programmable threshold that generates an inter-
rupt when the FIFO contains at least as many empty slots as the
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threshold value. When the interrupt is raised, the handler executes
a sem_post, a POSIX semaphores function that never blocks.

The software implementations of both the write function and the
task in charge of resuming the producer are presented in Figures 5
and 6. In these Figures, depth represents the number of slots of
the FIFO (a constant known at hardware generation time), status
is the number of currently filled slots in the FIFO, threshold is
a resource used to generate an interrupt when the status of the
FIFO reaches its value. itline is the interrupt line associated to
the threshold of the FIFO used for the current transfer. The chan-
nel semaphore is used to grant access to a resource of the channel
to either the producer or the consumer. status and threshold
are registers of the interface.

WRITE(channel, buf, size)
1 n « size
2 forever
3 dop — depth — status

4 m « min(n, p)
5 fori —Otom — 1
6 do fifo « buffi]
7 nen-—-m
8 ifn=0
9 then break
10 threshold « min(m, depth)
11 UNMASK_INTERRUPT(line)
12 SEM_WAIT(channel)
13 return size

Figure 5: write primitive for SW/HW communication

Lines 4 to 9 perform the transfer from the producer to the con-
sumer of at most m items to ensure that the producer will not be
blocked busy waiting for the hardware. This splits the data into
chunks of maximal size. Note that memcpy cannot be used here
since the FIFO is visible as a single address in memory. Lines 10
and 11 set the threshold value and allow the interface to trans-
mit an interrupt, in order to the task runnable again when sufficient
data will be available in the FIFO. The value of threshold is the
maximum acceptable by the hardware: all available slots or what’s
left to transmit. This ensures the minimum number of interrupts
and context switches necessary to perform the write. Lines 12
suspends the task.

THRESHOLDINTERRUPTHANDLER (channel)
1 MASK_INTERRUPT(line)
2 SEM_POST(channel)

Figure 6: Handler resuming the producer in software

Lines 1 to 3 mask the interrupt lines and acknowledge the inter-
ruption, and line 4 makes the scheduler aware of the fact that the
suspended task can resume. Since there are no blocking primitives
used in this handler, it is not necessary to create a task, thus avoid-
ing the task creation/deletion overhead.

33 HWto HW

The HW/HW template that we present here also has the FIFO in the
interface, which is therefore a slave. The on-chip interconnect is a
PI-Bus. We assume that the master is the producer and the slave
the consumer for the sake of the explanation, but the template is
completely symmetric.



Figure 7: Hardware/Hardware communication

To start a transfer, the CPU configures the master with the slave
address and the length of the transfer. It also ask the master to emit
an interrupt once the transfer is over.”

It then starts the master interface. Let us now assume that the pro-
ducer sends data at 2 high throughput and that the consumer reads
slowly. The simple solution is to have the slave emits wait ac-
knowledges on the on-chip bus. This, however, waste bandwidth
and may even lead to a bus timeout, if the same slave needs to
write data prior to read the one arriving on the bus. To avoid time-
out (and in fact deadlocks), one can issue retracts. On the PI-Bus,
the retract acknowledge informs a master that the slave is not yet
ready to perform a transfer. Therefore the master must release the
bus and make a new bus ownership request in at least 2 cycles, to
allow arbitration among all masters. However, the bus will be very
congested then, since many masters will compete for the bus only
to see if they can resume their transfers. This waste bus bandwidth
for the other masters that have indeed data to transfer (this is also
an issue for packet switching on chip interconnects).

An other solution is to have the master check the number of empty
slots and send only this amount of data. This needs another master
to fetch the FIFO status and clever hardware to build packets from
them. This also need some way ‘of asking the master to poll the
slave status, either using an internal timer or a CPU request. This
clearly isn’t viable for high performance communications.

The last solution is to use split transactions, but then the slave has
to re-initiate the transaction. Some busses, like the AMBA bus,
define how to perform split transactions. Unfortunately this is not
the case of the PI-Bus, thus we have to provide an implementation
that conforms to the standard and supports this behavior.

For the PI-Bus, we propose is a simple form of split transaction,
implemented in the bus wrappers. We index p the actors on the
producer side and ¢ the ones on the consumer side. The masterp is
coupled to a slavep, and the slavee is coupled to a masterc. Masterp
tries to write into a full FIFO. Slave. issues a split acknowledge
and masterp goes into a frozen state, waiting for a wakeup signal to
become true. When the condition for which slavec sent a split is no
longer true, masterc writes into slavep at a specific address. This
activates the wakeup signal, and p can its fe
Note that masterp doesn’t know how many slots are available in the
FIFO, but since the coprocessor on top of slave; makes vectorized
read requests, it is very likely that the adequate number of data will
be transfered at once.

This handshake is quite sophisticated and requires additional hard-
ware within the FIFOs and the wrappers. It is however necessary
to avoid using the CPU during 2 HW to HW transfer and to avoid
wasting bandwidth because of the use of wait or retract states.
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Figure 8: Implementation of the split transaction in the wrap-
pers

4. HARDWARE INTERFACE ARCHITEC-

TURE
Three considerations have been retained for the architecture of the
interface module:

1. The module must be usable on target interconnects with differ-
ent protocols and different size and timing constraints,

2. The module must be able to cope with different communication
strategies,

3. The interface module must be modular to grow with the number
of channel needed by the coprocessor plugged on top of it.

Point 1 is achieved by the use of the System VCI standard, that
allows to plug the interface on top of VCI compliant wrappers. We
have performed this operation for PI-Bus based system developed
by Philips [2] and on an packet switching network [9].

Point 2 is achieved by the definition of several communication tem-
plates that covers a wide range of uses, and by the use of these
templates to define the resources necessary to implement the com-
munications.

Point 3 is achieved by the implementation of the Interface Module
as a generic VHDL RT level synthesizable core.

The Figure 9 shows the internal architecture of the Interface Mod-
ule and its bus wrappers. The interface module has two VCI inter-
faces. One is a target to act as a slave on the bus and one is an ini-
tiator for bus master access. Behind the VCI interface, three kinds
of module are needed to support the communication templates: a
slave module, a master module and a interrupt source.

From the tasks point of view, a task has always the initiative of a
data transfer, because the task calls a primitive when it needs to
read or write data. The vector protocol also follows this semantic.
Between the coprocessor and the interface module, the coproces-
sor also always has the initiative of the transfer, but its initiative is
bounded to reading or writing a given internal FIFO of the interface
module.



Figure 9: Hardware Interface Module architecture

The slave module contains the FIFO of the communication channel.
Depending on the direction of the channel, the coprocessor reads
(or writes) in the FIFO using the vector protocol. The slave module
FIFO can be accessed through the bus slave wrapper and the VCI
interface, by any master on the bus.

Three other resources used by the communication templates are be
addressed in the slave module: the FIFO status register that give the
number of filled slots in the FIFO, the threshold interrupt genera-
tor that raises an interrupt when the number of filled slots is equal
to a value programmed by software, and an address used for the
implementation of the split transactions.

The master module is used when the internal FIFO is not the target
of the primitive: the interface module must fetch or store datain a
memory or in another interface module as a master on the system
bus. but the coprocessor does not have any knowledge on address
map. The master module must generate address to access the mem-
ory or a FIFO in another interface module. To do so, the master
module provides a programmable address generator. This address
generator can be configured by the software to address a FIFO in
an interface module or a circular buffer, that is a FIFO in memory.
The parameters of this address generator are the first address of the
transfer, the address of the last item (for a circular buffer), the in-
crement to add to the current address to get the next one, the total
length of the transfer to access only a finite number of data. It can
also generate, upon request, an interrupt to inform the processor
that the transfer is over.

The support for the split transaction is mainly the responsibility
of the wrappers, as illustrated Figure 8, that uses the naming con-
vention of the previous section. However, the interface itself must
provide a mechanism to inform the wrapper that a given slave has
data available.

The interrupt source receives the interrupt request of the other sub-
modules to send only one request to the processor. When the pro-
cessor receives the interrupt, it reads a vector in the interrupt source.
This vector is the one that corresponds to the active interrupt with
the highest priority. A vector is a 32 bits register that can be ini-
tialized by the processor at boot time. In the interrupt source, the

interrupts can be individually and atomically masked. The proces-
sor can get the status of each interrupt line and an acknowledge can
be send to the interrupt requester when the vector is read.

5. RESULTS

The Interface Module can be parameterized in term of number of
submodules: up to 8 slave modules and up to 2 master modules.
Each submodule can be parameterized independently in term of
data size, FIFO depth and interrupt generation.

The Interface Module has been described in C for cycle true simula-
tion under CASS[15] of complete systems. This allows to evaluate
the performance of each template accurately.

The interface module and the software drivers have been used to
implement a system realizing real time jpeg picture decoding whose
task graph and full software implementation is represented Fig-
ure 10.(a). The system (with a r3000 as processor), must run at
1.2GHz to reach 25 pictures per second. Using our approach, we
have realized the architectures and mappings of Figure 10. For real-
time decoding, Figure 10.(b) should run at 613MHz, Figure 10.(c)
at 473Mhz and Figure 10.(d) at 16 Mhz.

This example has shown that our tool box allows to switch commu-
nication templates and task mapping (HW or SW) easily.

This implentation can be compared with an ad-hoc design of the
same specification. Using the proposed approach to communica-
tion synthesis has allowed simple design space exploration by per-
forming different mapping of the tasks and communications. For
the same HW/SW partitionning (Figure 10.(d)), it has produced re-
sults of comparable performance (14MHz vs 16MHz), with less
buffers than the ad-hoc approach, in a much shorter time frame.

For actual hardware, a generic synthesizable RT level VHDL model
has been designed. The synthesis of a module with the following
configuration : 2 slave FIFO (twice 22 slots) and 2 masters (twice
12 slots) needs 11000 gates, 0.7 mm? in 0.18um, and has a propa-

gation time of 8ns.

6. CONCLUSION

Based on the general, system level, blocking read/blocking write
communication model, we have defined a practical approach to
communication synthesis. On the one hand, it relies on the use of
the POSIX threads for the implementation of the software drivers,
hiding the complexity of communication to the end-user. On the
other hand it makes use of a hardware module that provides the re-

. quired resources to implement a large number of communication
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templates. These templates have been chosen because they allow
to implement communication between tasks mapped either on soft-
ware or hardware efficiently, while minimizing resources usage.
The module is compliant with the System VCI standard, allowing
its use over many on chip interconnects.

During the COSY project, these hardware modules have been used
by Philips, with Philips own templates, as target for the commu-
nications mapping by Cadence VCC. We also have developed C
simulation models for Philips TSS [17] and UPMC CASS simula-
tors so to allow cycle true simulation of the resulting system.
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